Categorical data visualization and clustering using subjective factors
نویسندگان
چکیده
منابع مشابه
Categorical Data Visualization and Clustering Using Subjective Factors
A common issue in cluster analysis is that there is no single correct answer to the number of clusters, since cluster analysis involves human subjective judgement. Interactive visualization is one of the methods where users can decide a proper clustering parameters. In this paper, a new clustering approach called CDCS (Categorical Data Clustering with Subjective factors) is introduced, where a ...
متن کاملClustering Categorical Data Using Community Detection Techniques
With the advent of the k-modes algorithm, the toolbox for clustering categorical data has an efficient tool that scales linearly in the number of data items. However, random initialization of cluster centers in k-modes makes it hard to reach a good clustering without resorting to many trials. Recently proposed methods for better initialization are deterministic and reduce the clustering cost co...
متن کاملClustering Categorical Data
Dynamical systems approach for clustering categorical data have been studied by some authors [1]. However, the proposed dynamic algorithm cannot guarantee convergence, so that the execution may get into an in nite loop even for very simple data. We de ne a new conguration updating algorithm for clustering categorical data sets. Let us consider a relational table with k elds, each of which can a...
متن کاملClustering categorical data streams
The data stream model has been defined for new classes of applications involving massive data being generated at a fast pace. Web click stream analysis and detection of network intrusions are two examples. Cluster analysis on data streams becomes more difficult, because the data objects in a data stream must be accessed in order and can be read only once or few times with limited resources. Rec...
متن کاملClustering Numerical and Categorical Data
Clustering is an important technique for data mining which allows us to discover unknown relationships in our data sets. Clustering algorithms that use metrics based on the natural ordering of numbers cannot be applied to categorical (non-numerical) data. In this tutorial we will review the main methods for numerical data clustering (K-Means, Hierarchical Clustering and Fuzzy CMeans) and then s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data & Knowledge Engineering
سال: 2005
ISSN: 0169-023X
DOI: 10.1016/j.datak.2004.09.001